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An extensive study of the effects of frequency and strain amplitude as well as temperature
on the damping behaviour of superelastic NiTi shape memory alloy wires was undertaken.
A full factorial design taking into account the two-level interactions between these variables
has been conducted. The dissipated energy and the loss factor were analyzed. Analysis
shows that an increase in temperature has no effect on the dissipated energy while it
decreases slightly the loss factor. Both however increase with the increase in strain
amplitude. A maximum in dissipated energy and in the loss factor is observed around
0·1 Hz. Both factors then decrease as the frequency continues to increase. This behaviour
is also strain amplitude dependent. A thermal analysis showed that the observed frequency
and frequency–amplitude interaction effects are due to an important temperature variation
produced by the energy generated during the transformation. Finally, a three harmonic
Fourier sine series model is proposed to model the shape memory alloy dynamic behaviour.
Frequency, amplitude and temperature effects are taken into account and dissipated energy
and the loss factor can be determined from this model.
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1. INTRODUCTION

With the present increasing emphasis on environmental control, the problem of containing
severe vibration and noise in mechanical devices, either operating at high speed or during
impact loading, receives considerable attention. This is why materials which are able to
reduce vibration and noise are becoming more and more technologically important. The
desired properties of high strength, stiffness and tolerance to adverse environments seemed
to be incompatible with high internal damping for most materials. Highly viscoelastic
materials do show high damping capacities but often have insufficient strength. Recently,
some high damping metals have been developed which combine high inherent damping
with relatively high strength properties. One of the processes that lead to high energy
dissipation in metals is phase transformation, and in particular martensitic transformation
which occurs in Shape Memory Alloys (SMA) [1].

Shape memory alloys are two-phase alloys with the austenite being the high temperature
phase and the martensite being the low temperature phase. Phase transformation in these
alloys can either be temperature induced or stress induced. This leads to shape change.
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Atoms and defects move and reorientation of martensite results in large energy dissipation.
In these materials, the two phases can coexist over a certain temperature range, and three
main contributions to the damping are considered. They are the damping due to the
thermally induced transformation, the damping related to the stress induced
transformation, and finally, the intrinsic damping generated in the two coexisting phases
[2]. Dissipation coming from temperature variation occurs during heating or cooling. Over
the past few decades, extensive research efforts have been devoted to understand this
mechanism [2–4]. However, not many practical applications are found for the damping
generated by thermally induced transformation.

From a practical point of view, the two other energy dissipation mechanisms offer a
more interesting perspective. The intrinsic damping of the martensitic phase is quite high
due to the reorientation of the martensite twin variants under stress. Some applications
of martensitic alloys as dampers have been considered [1, 5, 6]. In the austenitic phase, the
intrinsic damping is low but if the applied stress is high enough, martensite can be stress
induced and this phase transformation will lead to high energy dissipation. Figure 1 shows
the stress–strain curve of an austenitic shape memory alloy. When the stress reaches the
transformation level sMs , martensite will be induced and this transformation will continue
until all the austenite has been transformed at an almost constant stress level. Upon release
of the stress, the martensite unloads elastically down to a stress level sAs , where it will
transform back to austenite, once again at an almost constant stress level. Once this
transformation is completed, there is a final elastic unloading of the austenite phase. This
is known as the superelastic effect since there is no permanent deformation even if the
behaviour is non-linear. The surface hysteresis which is equal to the volumetric energy
dissipated in a cycle during this transformation is quite high and gives rise to the interesting
damping capacities of these alloys. If the martensite is stress induced at a higher
temperature, the transformation stresses will increase linearly and shift the curve upward
as shown by the dashed lines in Figure 1. Applications of superelastic SMA to increase
damping have also been considered [1, 5, 6] with special interest in aseismic isolation [7]
or passive structural damping of beams [8]. SMA are much stronger than most viscoelastic
materials and relatively insensitive to environmental hazard. One of the advantages of
using them in the austenitic or superelastic state is that they can provide a restoring force

Figure 1. Superelastic stress–strain curve of a shape memory alloy. sMs and sAs are the stresses to start the
martensitic and the reverse austenitic transformation respectively. The dashed curve is for a solicitation at a
higher temperature.



    887

which helps restore the overall structure to its original position after any imposed
deformation. The usefulness of such materials will be governed by the temperature–fre-
quency–vibration amplitude ranges in which the damping capacity is sufficiently elevated,
and by the stability of damping under operating conditions.

Yet not much has been done to study the superelastic damping capacities of SMA.
Dejonghe et al. [4] performed a series of tests to study the mechanisms of energy dissipation
in Copper SMA. Among them, tensile tests where martensite was stress induced in an
austenitic alloy allowed the calculation of the dissipated energy DW from the surface of
the energy hysteresis, and of an internal friction factor defined as d= 1

2(DW/W), where W
is the strain energy. This factor decreased exponentially with the temperature due to the
fact that strain energy increases with temperature because there is an increase in
transformation stresses with temperature. Tobushi et al. [6] performed tensile tests on
superelastic NiTi SMA and studied the dissipated energy as a function of strain amplitude
and temperature. They showed that dissipated energy increases linearly with an increase
in strain amplitude since there is more martensite formed in the alloy. They also observed
a slight increase of this energy with the SMA temperature but no explanation of this
phenomenon was given.

An interesting study was done by Van Humbeeck and Delaey [9]. Tensile tests at
different uniform strain rates varying from 0·000033 s−1 to 0·067 s−1 were done on copper
SMA. A maximum of the dissipated energy and the internal friction at an intermediate
strain rate was observed. Temperature measurement of the samples showed that this effect
could be due to the variation of temperature resulting from the exo, endothermic
martensitic transformation. It was also concluded that the energy dissipated is temperature
independent.

Actually, little research has been done on NiTi alloys and even less under dynamic
conditions. This study is related to an ongoing research project on the use of SMA
reinforcement to add passive damping to polymer matrix composites. For this purpose,
austenitic NiTi wires 100 mm in diameter, were chosen. The first part of this project was
to study the superelastic behaviour of the wires in tensile testing. First under uniform strain
rate [10] and then, as presented in this paper, under sinusoidal loading to study their
damping capacity. In this study, tests were performed at three levels of vibration amplitude
(2, 3 and 4% of strain), over four decades of frequency (0·01, 0·1, 1, 5 and 10 Hz) and
at two temperature levels (25 and 35 °C). All possible combination of these variables were
tested. The results are statistically analyzed and a thermal analysis is done to determine
the temperature effect contribution to the results. Finally, a simple model for the dynamic
behaviour of the SMA using Fourier series is proposed and used to evaluate the dissipated
energy and the loss factor.

2. EXPERIMENTAL PROCEDURE

2.1. 

The NiTi wires, with a diameter of 100 mm, are straight annealed and chrome doped
(0·2%) for a better superelastic effect. Their transition temperatures were determined by
testing them in tension, at a strain rate of 0·0017 s−1 (10 mm/min) for different
temperatures. These transition temperatures were found to be −25°C for the austenitic
start (As) and −81°C for the martensitic start (Ms). To get a good grip on the wires for
the tensile tests, they were glued on cardboard tabs [10]. Prior to testing, so as to stabilize
the superelastic effect, each wire had to be precycled for 100 cycles at 5 Hz and 4·5 % cyclic
deformation. Figure 2 shows the stress–strain curves obtained at the beginning and after



. .   .888

Figure 2. Curves obtained after 1, 50, 100, 125, 150 and 200 cycles at 4·5% of precycling deformation.

50, 100 and up to 200 cycles, which clearly demonstrate the stabilisation effect after 100
cycles.

2.2. 

Tests were made on a servo hydraulic machine equipped with a 50 N load cell. Data
acquisition was made at a sampling rate of 1000 samples/s on each test. The deformation
was measured as the overall displacement of the cross head; the difference between this
measurement and the actual wire extension is negligible due to the stiffness of the loading
frame and the small loads and large deformations present in the wire. Tests were run in
a controlled temperature chamber.

2.3.     

The samples were loaded under a cyclic, tensile, sinusoidal deformation
e= e0(1−cos (vt)) in a deformation controlled mode. A full factorial design was selected
so that all interactions between the independent variables could be effectively investigated.
The independent variables in this study were: the frequency of excitation, the maximum
peak to peak strain amplitude and the temperature of the chamber. The levels of these
independent variables are shown in Table 1. 4% was chosen as the maximum peak to peak
vibration amplitude since it is roughly the maximum deformation a glass fiber can
withstand in a composite. Four samples were tested for each set of testing parameters, for

T 1

Levels of independent variables used in the tests

Level
ZXXXXXXXXXXCXXXXXXXXXXV

Variable Unit 1 2 3 4 5

Frequency f Hz 0·01 0·1 1 5 10
Maximum amplitude 2e0 % 2 3 4 – –
Temperature T° °C 25 35 – – –
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Figure 3. (a) Superelastic curve in tension (——) and in compression (–––). DW and W are respectively the
dissipated energy and the maximum strain energy in a tensile loading–unloading solicitation. (b) U is the
maximum potential energy in a tension–compression solicitation.

a total of 60 samples tested. All these samples were tested first at 25°C and then at 35°C,
thus resulting in a total of 120 experiments. The parameters studied (dependent variables)
were the dissipated energy by cycle DW (J/m3/cycle) which is the area of the energy
hysteresis, and the loss factor defined as h=(1/2p)(2DW/U) where U is the maximum
potential energy [11]. These parameters are shown in Figure 3. Loss factors are usually
defined for a full cyclic deformation in tension compression. If such a deformation is
applied on a SMA, the stress–strain curve in compression can be considered similar to the
one in tension as shown by the dotted lines in Figure 3. In cyclic loading, the total
dissipated energy is then equal to twice the energy dissipated in tension. This is the reason
for the factor 2 associated with the dissipated energy DW in the loss factor equation
presented earlier. For linear viscoelastic material with low damping, the maximum
potential energy U is equal to 1

2emaxsmax , but for a non-linear material a more precise
definition is U=W− 1

2DW [12], where W is the maximum strain energy at emax as shown
in Figure 3 and 1

2DW is the energy dissipated up to this point. These values were determined
by numerical integration.

Analysis of variance (ANOVA) was applied to investigate the main effects of the
independent variables (emax , f, T°) together with their interaction effects on dependent
variables.

3. RESULTS

3.1.  

Since Anova analysis revealed that there was no significant variation between the
samples, the graphical results presented here are for one typical sample and not average
values. To illustrate the interaction effect of temperature and maximum amplitude, the
stress–strain curves obtained for the various amplitudes and temperatures at a frequency
of 0·1 Hz are shown in Figure 4. As was said earlier, an increase in temperature causes
a linear increase in transformation stresses and a shift of the stress–strain curves upward
as can be seen on this figure. This will increase the maximum strain energy but there is
no evident effect of temperature on the dissipated energy. The increase in amplitude causes
an increase of the dissipated energy as well as an increase in maximum strain energy W,
as could be expected.
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Figure 4. Stress–strain curves at a frequency of 0·1 Hz at (a) 2% amplitude, (b) 3% amplitude, (c) 4%
amplitude, and 25°C (——) and 35°C ( · · · · ).

Figure 5 illustrates the effect of frequency by showing the results of samples tested at
25°C and 4% of amplitude at four different frequencies. As can be observed, up to 0·1 Hz,
the stress difference between the two plateaus increases, producing an increase in the
surface hysteresis, and also in the dissipated energy; For higher frequencies, the lower
plateau deforms and rises, causing a pronounced reduction of the surface hysteresis. This
may be due to a variation of the samples temperature and will be discussed later in this
article.

3.2.  

ANOVA analysis is an effective method of analyzing complex and numerous results
when interactions between the independent variables may arise. Essentially, this analysis
determines whether the discrepancies between the average results at the different levels of
a parameter are greater than could reasonably be expected from the variation that occurs
within the results at a specific level of the parameter. The analysis of variance table is a
valuable device due to Box et al. [13], which allows for the evaluation of the hypothesis
that there is no difference between the results at the different levels of the parameters. The
ANOVA output and the calculated F ratio for a confidence interval of 95% are shown
in Tables 2 and 3 for the dissipated energy and the loss factors. The F-ratios compare the
mean square of an effect (main or interaction) to the residual mean square; if this ratio
is close to one, there is no significant difference. p is the probability of accepting this
hypothesis as determined from the F probability table; if this probability is lower than 0·05,
then there is a significant effect. Interactions are shown only for significant effects

Figure 5. Stress–strain curves at 25°C and 4% of amplitude for four different frequencies: (a) 0·01 Hz; (b)
0·1 Hz; (c) 1 Hz and (d) 10 Hz.
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Figure 6. Variation of the average values of the dissipated energy at 2% (——), 3% (- - - -) and 4% (· · · ·)
of amplitude.

(pQ 0·05). All the observed effects have a statistical probability of more than 99%, which
is very significant. Results are plotted in Figures 6 and 7 with their confidence intervals.

3.2.1. Temperature effect and amplitude and frequency interaction on dissipated energy
(DW)

Table 2 shows that the dissipated energy is affected by the three independent variables
with some interactions between amplitude and frequency. In fact, analysis of the results
shows that the ambiant temperature effect was negligible. As can be seen in Figure 4, when
the amplitude increases, so does the dissipated energy. The dissipated energy is
proportional to (emax − eMs ) where emax =2e0 is the peak to peak vibration amplitude and
eMs is the deformation at which the martensite transformation begins. Also, frequency
interacts with the amplitude. For instance, at 2% strain, there is only a slight variation
in dissipated energy by varying frequency, while at 4% the variation is more important
and the maximum occurs at around 0·1 Hz. At higher frequencies, dissipated energy
decreases. Moreover, at 2% amplitude the maximum occurs at a slightly higher frequency
than for the higher amplitudes. As it was shown in a previous paper [14], there is an

Figure 7. Variation of the average values of the loss factor with (a) the amplitude at 2% (——), 3% (- - - -)
and 4% (· · · ·), and with (b) the temperature at 25°C (——) and 35°C (– – –).
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T 2

Anova and F ratio for dissipated energy DW (d.f.: degree of freedom)

Source of variation Sum of squares d.f. Mean square F ratio Sig. level

Main effects
A: Temperature 6·72e4 1 67 203 25·19 0·0000
B: Deformation 1·1e8 2 54 954 357 20 595·33 0·0000
C: Frequency 2·35e7 4 5 876 700 2202·42 0·0000
Interaction
BC 4 737 996 8 592 249 221·96 0·0000

Residual 240146 90 2668 – –

Total (corrected) 1·39e8 119

important temperature variation of the samples as the strain rate increases. It could be
the reason for the behaviour observed here and is studied in more details in section 4 of
this paper.

3.2.2. Temperature effect and amplitude and frequency interaction on the loss factor (h)
Table 3 shows that the loss factor is affected by the three variables with some interactions

between deformation and frequency, and temperature and frequency. As can be seen from
the last graph of Figure 7, the difference in behaviour at 25 and 35°C is less important
at higher frequency than at the low frequency.

To get a better understanding of the loss factor variations, it helps to look at the
maximum potential energy U=W− 1

2DW as a function of the different variables. Figure
8 shows the variations of U as a function of temperature and frequency at the different
amplitudes. Since the maximum strain energy W increases with ambient temperature in
the same way as do the transformation stresses while the dissipated energy DW is not much
affected by the temperature, the potential energy U increases with temperature which
causes a decrease in the loss factor as the ambient temperature increases. The maximum
potential energy increases with the frequency, and this increase is more pronounced at
higher amplitudes. Since dissipated energy decreases with frequencies higher than 0·1 Hz,
the decrease of the loss factor which is proportional to DW/U is more pronounced. The
interaction with amplitude is also more pronounced for the loss factor since the increase

T 3

Anova and F ratio for the loss factor h (d.f.: degree of freedom)

Source of variation Sum of squares d.f. Mean square F ratio Sig. level

Main effects
A: Temperature 0·00414 1 0·00414 402·32 0·0000
B: Deformation 0·047368 2 0·02368 2301·55 0·0000
C: Frequency 0·070685 4 0·01767 1717·25 0·0000
Interactions
AC 4·083e−4 4 1·02e−4 9·92 0·0000
BC 2·921e−3 8 3·65e−4 35·48 0·0000

Residual 0·000926 90 1·03e−6 – –

Total (corrected) 0·126567 119 – – –
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Figure 8. Variation of the average values of the maximum potential energy with (a) the temperature, and (b)
the amplitude at 2% (——), 3% (- - - -) and 4% (· · · ·).

of potential energy U is more important at 4% of amplitude than at 2%. These phenomena
may be due to a thermal effect and will be investigated in the next section.

4. THERMAL ANALYSIS

4.1. 

It has been mentioned that frequency effects and frequency–amplitude interaction may
be a temperature effect due to the nature of the transformation: the austenite–martensite
transformation is exothermic and the martensite–austenite transformation is endothermic.
The energy generated by this transformation is proportional to the volume fraction of
martensite formed and is at its maximum in the middle of the transformation. At a high
strain rate, the heat generated by the austenitic–martensitic transformation may not have
time to dissipate and this will cause the sample temperature to increase. So, the
transformation stress will rise which, in turn, will produce an increase of the slope of the
upper plateau in the stress strain curve. During the reverse transformation, the mechanism
will be similar with a cooling of the specimen which will not have time to absorb enough
heat at high strain rate. The presence of such effects was shown by different authors [9, 15].

The importance of this phenomenon depends on the quantity of heat generated, which
is a property of the material, and of the size of the specimen. For large samples, the
temperature effect will be predominant with increasing difficulty of energy dissipation,
while for small samples it may be minimized to a certain limit. It was shown in a previous
paper [14] that even if the wire diameter is very small, important heat effects occur as strain
rate increases. Therefore, a simplified thermal analysis was performed to determine the
importance of that effect in the case of a sinusoidal loading.

4.2. 

The problem is to determine the temperature of a long rod having a large length to
diameter ratio, 100 mm over 0·1 mm. Thermal energy is generated in the specimen by
transformation and by internal friction. This energy can usually be dissipated by
convection, radiation and conduction. Due to the small area of the wire, the dissipation
by radiation is negligible as well as radial conduction. For conduction through the gripping
fixture, since the samples are very long compared to their diameter and are fixed on
cardboard with epoxy glue which make a good thermal insulation, it is assumed to be
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negligible as well. So the only significant heat dissipation process considered in this case
is the convection process.

With the assumptions that at any time t the temperature of the wire is uniform and that
constant properties exist, the conservation of energy law can be applied. For a time interval
Dt small enough for the assumptions to be valid, it is expressed in a discreet form as

Eg −Eout =DEst , (1)

where Eg is the energy generated, Eout is the energy leaving through the surface and DEst

is the variation of energy stored within the volume. The energy outflow is due to convection
and is given by

Eout = h(pDL)(T−Ta), (2a)

where h is the convection heat transfer coefficient, D and L are the diameter and the length
of the wire respectively, and (T−Ta) is the difference between the sample temperature
T and the room temperature Ta. The convection heat transfer coefficient is a function of
the temperature difference (T−Ta) [16]. This relation can be expressed as

h= ha(T−Ta)1/3, (2b)

with ha and h being the convection coefficients at room temperature and at the sample
temperature respectively.

The variation in thermal energy storage is due to the temperature change in the sample,

DEst = rVc DT, (3)

where r is the density, V the volume of the sample and c the specific heat. DT is the sample’s
temperature change over the time interval Dt.

As said previously, the energy generation is due to two phenomena, Eg(tr) and Eg(FI), which
are the austenitic–martensitic transformation energy and the internal friction energy
respectively. The energy generated by the transformation for a time Dt is given by

Eg(tr) = rV DH Df(e), (4)

where DH is the transformation enthalpy and Df(e) represents the fraction of energy
generated during the time interval Dt. It was shown [14] that the best model to represent
this energy generation is a linear increase of energy generation during the transition
between the elastic deformation of the austenite and the uniform transformation to
martensite, followed by a uniform rate of energy generation once the upper plateau is
reached in the stress–strain curve, and ending by a linear decrease at the end of the
transformation.

The second energy generation term is due to the dissipative process associated with the
phase change in the material. It occurs during the transformation and is mainly due to
displacements of atoms. It is proportional to the surface of the energy hysteresis of the
stress–strain curve HYS (J/m3). This energy generation term is given by

Eg(FI) =V DHYS, (5)

where DHYS is the energy generated during the time interval Dt. Half the hysteresis energy
is dissipated during loading and the other half during unloading. If this dissipation process
is assumed uniform, the rate of viscous energy dissipation by unit of strain, Dhys, can be
determined from the tests results. DHYS is then given by

DHYS=Dhys De, (6)
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where De is the increment of strain during the time interval Dt. It is given by

De= e(t+Dt)− e(t), (7)

where e=2e0(1−cos (vt)).
By using equations (2)–(7) in conjunction with equation (1), the increment in

temperature for a time interval Dt can be determined. The sample temperature can be
determined for each strain level during the cyclic deformation by incrementing the strain
by De and computing the new temperature reached for each increment.

All the values used for this computation are given in Table 4. The coefficients hac, and
DH were taken from references [17–19]. In the present case, the convection heat transfer
coefficient was increased since a fan was used in the controlled temperature chamber to
insure a uniform air temperature distribution. For the specific heat coefficient c, the same
value was used for the austenite and the martensite phase, so an average value of the
martensitic and austenitic coefficients was taken. The other values in the table were
obtained from the test results. To simplify the problem, these values were supposed to be
independent of strain rate and ambient temperature, and the following assumptions were
made: (1) eMs , eAs and eAf are the same for all cases; (2) for DHYS the average value of the
tests made at 4% of deformation, 25°C and a uniform strain rate of 0·0017 s−1 was taken;
Dhys was determined from this value and assumed constant for all cases.

Since the values of the strain to begin and end the transformations are not very much
affected by the test conditions, the first assumption can be justified. As for the second
assumption, the value of the hysteresis is strongly dependent on strain rate as can be seen
in Figure 7. But since this energy generation term is an order of magnitude smaller than
the energy generated by the transformation, its influence is not important and a constant
value can be assumed.

4.3. 

Figure 9 shows the sample temperature versus the deformation for each frequency at
2% and 4% of maximum amplitude and 25°C. The behaviour is the same at 25 and 35°C,
the sample temperature being 10° higher at 35°C, so only the results at 25°C are presented.
At 0·01 Hz, an equilibrium is established between the energy generation and the energy
outflow so that the sample quickly reaches a stable temperature. The increase in
temperature at this point is not very important (2°C at 4%).

T 4

Values of the coefficients used in the thermal simulation

Property Symbol, source Value

Diameter (m) D 1×10−4

Length (m) L 0·1
Density (kg/m3) r 6500
Convection (W/m2°C) ha 32·5
Specific heat (J/kg°C) c 750
Transformation enthalpy (kJ/kg) DH 25
Internal friction (kJ/m3) DHYS 2600
Martensitic start (%) eMs 1
Austenitic start (%) eAs 2e0†−0·5
Austenitic end (%) eAf 0·5
Time increment (s) Dt 1/500f

†2e0 =maximum amplitude



. .   .896

Figure 9. Sample temperature as a function of strain at four levels of frequency: (a) 0·01 Hz, (b) 0·1 Hz, (c)
1 Hz and (d) 10 Hz, and two amplitudes: 2% ( · · · · ) and 4% (——), as determined by the simulations.

As the frequency increases and the cycling period decreases, the energy does not have
enough time to dissipate, and the sample temperature increases steadily. At 0·1 Hz, the
increase in temperature during loading will produce an increase of the upper plateau stress.
During unloading, the sample temperature gets lower than the room temperature which
will result in a decrease of the lower plateau stress. So there is an increase in the stress
hysteresis that results in higher energy dissipation as observed. With ensuing increase in
frequency, the temperature during unloading will stay higher than room temperature and
produce an increase in the lower plateau stress. This is the reason for the decrease in
hysteresis and dissipated energy that was observed. When the frequency reaches 1 Hz and
continues to increase up to 10 Hz, the temperature variation during loading remains the
same which explains the stability of the maximum strain energy as seen in Figure 8.

At 2% of maximum amplitude, the general behaviour as a function of the frequency
is similar to the one at 4% of maximum amplitude, but the maximum temperature reached
is not as important (30°C versus 42°C). With less martensite produced, there is less energy
generated and not as much temperature variation. This is the reason for the
amplitude–frequency interaction and the difference in behaviour at amplitudes of 2 and
4% observed in Figure 6. So the thermal simulation shows that frequency effects and
frequency–amplitude interaction are mainly temperature effects due to the energy
generated during the transformation.

5. DYNAMIC MODELLING

5.1. 

Modelling the shape memory alloys behaviour under dynamic loading is not a simple
task due to the complex stress–strain–temperature relations and the numerous factors that
affect this behaviour. Some models use constitutive equations based on thermomechanical
relations [20, 21], others use models based on experimental results [22]. But all these models
can be applied in simple cases only and at low uniform strain rate. In the literature, no
attempt to model dynamic behaviour of shape memory alloys was found.
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Since SMA have a highly non-linear viscoelastic behaviour, under a sinusoidal strain
variation the stress response is non-simusoidal. This prevents the utilisation of the
parameter normally used in linear viscoelasticity such as the elastic modulus E' for the part
of the response which is in phase with the sollicitation, the loss modulus E0 for the other
part of the response and the loss factor defined as tgd where d is the phase angle between
the response and the solicitation.

When non-linearity arises, different theories have been proposed [23, 24], such as the
multiple integrals theory [25]. They are often used with polymers since non-linearity usually
occurs even at low strain for these materials. But these theories can be applied in isothermal
situations and with ‘‘simple materials’’ only (no yield points as an example). It was shown
in the previous section that SMA behaviour is non-isothermal, so even the usual non-linear
viscoelastic theories cannot be used. However, it can be observed that under sinusoidal
loading all these non-linear theories lead to a response in the form of a series of sines and
cosines. This follows Fourier’s theory saying that any periodic functions may be
represented as a series of sines and cosines terms. So to model the behaviour of any kind
of materials, a Fourier series of the form

Y=Y0/2+ s
n

i=1

YiR cos (ivt)+ s
n

i=1

YiI sin (ivt), (8)

where the R indices are for the real part of the response, in phase with the loading, and
I is for the imaginary part, out of phase with the loading, can then be used. Since all the
coefficients are functions of the dependent variables, this form of equation is interesting
if the series can be limited to a restricted number n of harmonics.

5.2.      

The identification of the SMA dynamic behaviour using the Fourier series has been
found sufficiently accurate by using three harmonics in the Fourier series development.
From the experimental stress results, the sine series coefficients have been calculated using
a Fast Fourier Transform (FFT). It was observed that Y0 and Y1R were important, while
Y1I , Y2R and Y2I were an order of magnitude lower and the Y3 coefficients were two orders
of magnitude lower. The other terms were much smaller and therefore negligible. Figure
10 shows the stress results by comparing a test made at 4% of amplitude and 25°C with

Figure 10. Fourier three harmonic sine series simulation of the stress–time experimental results at 25°C and
4% of strain amplitude at four different frequencies: (a) 0·01 Hz, (b) 0·1 Hz, (c) 1 Hz and (d) 10 Hz. The Fourier
coefficients are determined from experimental results. Experimental ( · · · · ), FFT model (——).
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their three harmonics series development. As can be seen, the agreement between the two
curves is very good. A very simple model is then obtained where the coefficients can be
easily determined from experimental results.

So, for a loading of the form given by

e=2e0(1−cos (vt)), (9)

the NiTi shape memory alloy has a stress response given by

s= s0 + s1R cos (vt)+ s1I sin (vt)+ s2R cos (2vt)+ s2I sin (2vt)

+ s3R cos (3vt)+ s3I sin (3vt). (10)

The model includes seven coefficients which are functions of amplitude, frequency and
temperature and for which equations need to be determined. The coefficients were
determined for all the tests made in this work. Empirical equations for these coefficients
can then be found and are given with their coefficients of determination, R2, by

s0 =232+4T+22e0 +1186 sin (log ( f )) (R2 =92%),

s1R =−250−1·8T+24e0 −54f 0·25 +4·8f (R2 =91%),

s1I =52−96f 0·27 +204f 0·1 −206e−1
0 (R2 =90%),

s2R =396−1·34T−384e0·1
0 −4·6e0·8

0 f 0·5 −2·8f 0·4 (R2 =92%), (11)

s2I =−48+0·2T+5·2e0f 0·2 (R2 =74%),

s3R =60−0·7T−26e0 +0·6 log ( f ) (R2 =97%),

s3I =8+370e−4
0 −123f 0·15 +72e0f 0·25 (R2 =75%).

R2 is a measure of the precision of an equation to model the data. The constant s0 in
equation (10) arises from the constant in the deformation. The first harmonic terms may
be seen as the linear response of the material associated to the deformation imposed to
the material. The other harmonics would then represent the non-linear part of the
response. The non linear response can be associated with other forms of deformations such
as atomic motion and transformation which may occur at a different frequency than the
loading.

5.3.   D  h    

From the FFT model, one should be able to determine the dissipated energy and the
loss factor. In a stress-strain relation, the energy is given by the equation

E=g s do. (12)

From the equations for stress and strain given by the relations (9) and (10), the equation
for the energy with the FFT model can be determined and is given by

E= e0(−s0 cos (vt)− 1
4s1R cos (2vt)+ 1

2s1I [t− 1
2 sin (2vt)]

+ 1
2s2R [cos (vt)− 1

3 cos (3vt)]+ 1
2s2I [sin (vt)− 1

3 sin (3vt)]

+ 1
2s3R [12 cos (2vt)− 1

4 cos (4vt)]+ 1
2s3I [12 sin (2vt)− 1

4 sin (4vt)]. (13)
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Figure 11. (a) Dissipated energy and (b) loss factor as determined from the FFT model (——), 2%; (- - - -),
3%; (· · · ·), 4% for the SMA dynamic behaviour. Experimental results: R 2%, T 3% and E 4%.

The dissipated energy is the energy evaluated over a complete cycle. Due to the orthogonal
properties of sines functions, most of the terms vanish and the relation for DW is given
by

DW= ps1Ie0. (14)

This is exactly the same equation that is obtained for a linear viscoelastic material. It means
that the dissipated energy is due to the first imaginary harmonic only and a loss modulus
E01 = s1I /e0 can be defined for this non-linear viscoelastic material.

The maximum strain energy in the present situation is equation (13) evaluated between
0 and p/v. So the relation for W is given by

W=2s0e0 + 1
2ps1Ie0 − 2

3s2Re0 (15)

and since the loss factor in this case is given by h=1/p(DW/U), where U=(W− 1
2DW),

the final equation is

h= s1I /2(s0 − 1
3s2R ). (16)

So, using equations (14) and (16) including the relations of equations (11) for the
coefficients, the dissipated energy and the loss factor can be determined for the Fourier
model. Figure 11 shows the results from this model versus the experimental results. The
agreement is good at low amplitude but as the amplitudes increase, there is more
divergence between the model and the experimental results, specially for the loss factor.
There are two main sources of error in the determination of DW and h. First, the increasing
difficulty to get a perfect sinusoidal deformation as the frequency and amplitude increase,
and secondly the error introduced by the truncated Fourier model and by the utilisation
of the coefficients from equations (11) for which the coefficients of determination vary from
74–97%. Even if it is not perfectly accurate, the sine series model is very efficient and very
useful mainly because the coefficients are easily determined and because it is not
mathematically complex.

6. CONCLUSIONS

An extensive study of the effects of frequency, strain amplitude, temperature and their
interactions on dissipated energy and loss factor was done on a NiTi shape memory alloy.
It was found that ambient temperature has no significant effect on dissipated energy, but
the loss factor decreases with an increase in temperature as the transformation stresses,
and so the potential energy, increases with the temperature. An increase in strain amplitude
produces both an increase in dissipated energy and the loss factor. Concerning the
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frequency, a maximum in dissipated energy and in the loss factor was observed around
0·1 Hz. As the frequency continues to increase, there is a pronounced decrease in these
two parameters and a sharp decrease of the hysteresis was observed. This behaviour is
amplitude dependent, and the variations are more pronounced at 4% than at 2% of strain
amplitude.

A theoretical thermal analysis was performed to predict the temperature variation in the
samples due to the energy generated by the phase transformation. It was shown that as
the frequency increases from 0·01 Hz to 0·1 Hz the shape memory alloy temperature
increases in loading and decreases during unloading. This produces an increase in stress
hysteresis and so of the dissipated energy and of the loss factor. For higher frequencies,
the temperature during unloading increases over the ambient temperature, causing a
decrease in dissipated energy. Since there is more transformation, and so more energy
generated with the increase in amplitude, these effects are more pronounced at high
amplitude. So it can be concluded that the frequency effects and the frequency-amplitude
interaction effects are mainly due to a thermal effect.

Finally, a Fourier three harmonic sine series was successfully used to model the dynamic
behaviour of the shape memory alloy as a function of frequency, amplitude and
temperature. The coefficients were determined by FFT of the experimental results and
empirical models for these coefficients were derived. This results in a model very easy to
derive and to use. The relations for the dissipated energy and the loss factor determined
from this model are very simple.
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